Abstract

Stable ruthenium nanoparticles were prepared by passivation of the metal cores (diameter 2.7–3.2 nm by transmission electron microscopy) with ruthenium–carbon covalent bonds. Electrochemical study showed that the electronic conductivity of the particle films exhibited metal-like temperature dependence, and it decayed exponentially with the length of the alkyl spacer of the aliphatic protecting ligands, with an electronic coupling coefficient ( β) of 0.48 Å −1. This was ascribed to the strong Ru–C bonding interaction and low interfacial contact resistance where the spilling of core electrons into the organic protecting shell led to enhanced interparticle charge transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.