Abstract
Solid-state lithium batteries (SSLBs) are regarded as next-generation energy storage devices because of their advantages in terms of safety and energy density. However, the poor interfacial compatibility and low ionic conductivity seriously hinder their development. Electrospinning is considered as a promising method for fabricating solid-state electrolytes (SSEs) with controllable nanofiber structures, scalability, and cost-effectiveness. Numerous efforts are dedicated to electrospinning SSEs with high ionic conductivity and strong interfacial compatibility, but a comprehensive summary is lacking. Here, the history of electrospinning SSEs is overeviewed and introduce the electrospinning mechanism, followed by the manipulation of electrospun nanofibers and their utilization in SSEs, as well as various methods to improve the ionic conductivity of SSEs. Finally, new perspectives aimed at enhancing the performance of SSEs membranes and facilitating their industrialization are proposed. This review aims to provide a comprehensive overview and future perspective on electrospinning technology in SSEs, with the goal of guiding the further development of SSLBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.