Abstract
Abstract Solid-state cultivations of genetically modified strains of Aspergillus nidulans A773, using soybean fibre as substrate, were carried out to produce xylanase and arabinofuranosidase, and these enzymes were subsequently used to obtain xylooligosaccharides using the same agro-residue. First, the best fungi cultivation conditions (moisture content, pH, temperature and addition of maltose) were optimized one-by-one for obtain the crude enzyme extracts. Subsequently, the application of xylanase on soybean fibre to obtain xylooligosaccharides was optimized by central composite design, defining best enzyme concentration and reaction temperature. The best condition obtained (50 °C and 117 U g−1 of soybean fibre) was used to evaluate the co-production of xylooligosaccharides by the addition of different concentrations of arabinofuranosidase. The highest yield of xylooligosaccharides obtained was 28% (mass fraction of xylan), showing final concentrations (in mg g−1 arabino-xylan) of 138.36 xylobiose (X2), 96.96 xylotriose (X3), and 53.04 xylotetraose (X4), in 9 h enzymatic reactions. The conversion of arabino-xylans into different xylooligosaccharides suggests the potential to use recombinant A. nidulans A773 enzymes to obtain prebiotics using a sugar-rich, low-cost soybean residue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.