Abstract

Carbon monoxide (CO) oxidation performance heavily depends on the surface-active species and the oxygen vacancies of nanocomposites. Herein, the CuOx/Cu1.5Mn1.5O4 were fabricated via solid-state strategy. It is manifested that the construction of CuOx/Cu1.5Mn1.5O4 nanocomposite can produce abundant surface CuOx species and a number of oxygen vacancies, resulting in substantially enhanced CO oxidation activity. The CO is completely converted to carbon dioxide (CO2) at 75 °C when CuOx/Cu1.5Mn1.5O4 nanocomposites were involved, which is higher than individual CuOx, MnOx, and Cu1.5Mn1.5O4. Density function theory (DFT) calculations suggest that CO and O2 are adsorbed on CuOx/Cu1.5Mn1.5O4 surface with relatively optimal adsorption energy, which is more beneficial for CO oxidation activity. This work presents an effective way to prepare heterogeneous metal oxides with promising application in catalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call