Abstract

We present a combined X-ray diffraction (XRD), high-frequency and -field electron paramagnetic resonance (HFEPR), and theoretical study of an organochromium(III) complex with relevance to polymerization catalysis that crystallizes in a disordered structure with two conformational isomers in a ratio of 0.89:0.11. The structure is exceptional, as the disorder is restricted to the CrCl2 moiety, whereas the organic ligand is not disordered within the precision of the structure determination. Although the geometry is only slightly varied, these Cr(III) (3d3, S = 3/2) isomers give substantially different EPR spectra so that both species can be analyzed in terms of distinct zero-field splitting (zfs) parameters. Using the solid-state molecular structure of each isomer, calculated spin Hamiltonian parameters using high-level ab initio methods are in good accordance with the experimental results. However, no energy barrier could be identified by calculation of the gas-phase molecular structure, leading to the conclusion that the occurrence of the two isomers is due to intermolecular interactions in the solid state. These results highlight the subtle structural differences that can exist in organometallic complexes. Such structural conformations might well be accessible in solutions of precatalysts and active polymerization catalysts affecting their reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.