Abstract

Solid state 33S NMR spectra of a variety of inorganic sulfides have been obtained at magnetic field strengths of 4.7 and 17.6 T. Spectra acquired with magic angle spinning show considerable improvements in sensitivity and resolution when compared with static spectra. Multiple factors are considered when analyzing the spectral line widths, including; magnetic field inhomogeneity, dipolar coupling, chemical shift anisotropy, chemical shift dispersion (CSD), T 2 relaxation, and quadrupolar coupling. Quadrupolar coupling was expected to be the dominant line broadening mechanism. However, for most of the samples CSD was the prevailing line broadening mechanism. Thus, for many of the metal sulfides studied at a high magnetic field strength, the line widths were actually larger than those observed in the spectra at low field. This is atypical in solid state 33S NMR. Solid state 33S spin–lattice ( T 1) and spin–spin ( T 2) relaxation rates were measured for the first time and are discussed. This information will be useful in future efforts to use 33S NMR in the compositional and structural analysis of sulfur containing materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.