Abstract

AbstractThe polymorphism of poly(vinylidene fluoride) (PVDF) and its nanocomposites was studied by means of solid state nuclear magnetic resonance spectroscopy. 13C cross polarization magic angle spinning (13C CP MAS) NMR spectra were recorded using simultaneous high‐power decoupling on both the proton and fluorine channels. Both 1H → 13C and 19F → 13C CP experiments were conducted, giving identical results apart from intensity variations due to the CP efficiency. Two main resonances for the CF2 and the CH2 groups were observed for both neat PVDF (PVDF‐C0) and the nanocomposite containing 2 wt% clay (PVDF‐C2) samples. 19F CP MAS spectra were obtained from long proton spin‐lock experiments with a shorter contact time. The results showed two strong resonances at −84 and −98 ppm with equal intensities, representing the α‐form crystalline structure of PVDF. It was shown that the clay induces the crystallization of PVDF in β‐form. Our earlier investigations using thermal analysis and X‐ray scattering methods also showed crystal transformation of PVDF in its clay nanocomposites. POLYM. ENG. SCI. 46:1684–1690, 2006. © 2006 Society of Plastics Engineers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call