Abstract
ABSTRACTThe use of solid solution additives has been shown to be very effective for the formation, by conventional sintering, of ceramic materials with high density and with controlled grain size. However, the number of systems for which such additives have been successfully found remains quite small, and the role of the additives is fairly well understood in only two or three of these. This paper describes the initial part of a systematic study into the effects of solid solution additives on the sintering of ceramics. Cerium oxide was chosen as a model host powder for this work because it has appreciable solubility for many additives. A combination of kinetic data and microstructural observations indicate that the sintering and grain growth are influenced significantly by the additive size but less significantly by the additive charge. The density versus grain size relationship is almost independent of the additive below relative densities of = 0.90 but depends strongly on the additive above this density. The data are interpreted in terms of the effect of the additives on the densification to coarsening ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.