Abstract
A kind of curved long-period fiber grating(CLPFG) engraved by CO2 laser based on oxide-doped fiber was designed to monitor the structural integrity of propellant. The mechanical damage characteristics of the propellant were analyzed. The sensor model is constructed and the refractive index modulation characteristics of the CLPFG are analyzed. The strain coupling characteristics and the strain transfer efficiency of the interface between the CLPFG and the propellant are clarified. Propellant modules with implanted CLPFG were fabricated. The novel grating sensor has been effectively coated and structurally packaged. Conducted experiments on strain and temperature of propellant modules. The large strain measurement of propellant from 0 με to 24000 με is realized. Solved the thorny problem of large strain measurement for propellants. In addition, the temperature discrimination measurement in the temperature range of 30 ℃ to 250 ℃ can be realized. Sensor exhibit extremely high stability characteristics and has good compatibility with propellants. The sensor implantation and extraction structure has been designed to improve the survival rate of the sensor inside the solid rocket motors (SRM). Sensors can accurately measure the mechanical and thermal state parameters of propellants, providing effective data support for the health management of SRM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.