Abstract

To date, zinc-ion batteries (ZIBs) have been attracting extensive attention due to their outstanding properties and the potential to be the solution for next-generation energy storage systems. However, the uncontrollable growth of zinc dendrites and water-splitting issues seriously restrict their further scalable application. Over the past few years, solid polymer electrolytes (SPEs) have been regarded as a promising alternative to address these challenges and facilitate the practical advancement of zinc batteries. In this review, we revisit the research progress of SPEs applied in zinc batteries in the past few years and focus on introducing cutting-edge polymer science and technologies that can be utilised to prepare advanced SPEs for high-performance zinc batteries. The operating mechanism of SPEs and the functions of polymers are summarised. To highlight the polymer’s functions, SPEs are categorised into three types, homogenous polymer SPEs, hybrids polymer SPEs, and nanocomposites SPEs, which are expected to reveal the roles and principles of various polymers in zinc batteries. This review presents the current research progress and fundamental mechanisms of polymer-based SPEs in zinc batteries, outlines the challenging issues encountered, and proposes potential solutions for future endeavours.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call