Abstract

AbstractThe paper describes the studies of the transformation of Cs+- and Sr2+-containing zeolite sorbents synthesized from fly ash cenospheres to crystalline mineral composition, suitable for the long-term disposal. Series of Cs+- and Sr2+-exchanged NaP1-containing sorbents were subjected to the thermochemical transformation in the temperature range 40-1100°C at atmospheric pressure in air and the progress of reaction was monitored by DSC and XRD analysis. It was shown that initial sodium zeolite undergoes two-step transformation at 736-785°C and 892-982°C forming nepheline as the principle product, with the conversion temperatures being dependant on the heating rate.The thermal treatment of Cs+-bearing zeolite sorbent led to formation of a complex multiphase system, the principal components of which were nepheline and pollucite. Increasing cesium content in the samples led to a monotonous shift of crystallization peak to the higher temperature range (1005-1006°C). A more complicated behavior was observed for Sr2+-containing samples, for which the crystallization temperature tends to increase (compared with NaP1) at lower Sr contents, but it starts decreasing parallel to the Sr2+ content at Sr2+ loadings >10 mg/g. The principal crystalline phases in Sr-NaP1 sample conversion were nepheline and Sr2+-containing feldspar, the quantity of which increased parallel to the increase of strontium content in zeolite.Apparent activation energies of thermochemical transformations were calculated and possible approaches to reduce transformation temperature are discussed and experimentally illustrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.