Abstract

We report a solid-phase strategy for total synthesis of the peptidic natural product yaku'amide B (1), which exhibits antiproliferative activity against various cancer cells. Its linear tridecapeptide sequence bears four β,β-dialkylated α,β-dehydroamino acid residues and is capped with an N-terminal acyl group (NTA) and a C-terminal amine (CTA). To realize the Fmoc-based solid-phase synthesis of this complex structure, we developed new methods for enamide formation, enamide deprotection, and C-terminal modification. First, traceless Staudinger ligation enabled enamide formation between sterically encumbered alkenyl azides and newly designed phosphinophenol esters. Second, application of Eu(OTf)3 led to chemoselective removal of the enamide Boc groups without detaching the resin linker. Finally, resin-cleavage and C-terminus modification were simultaneously achieved with an ester-amide exchange reaction using CTA and AlMe3 to deliver 1 in 9.1 % overall yield (24 steps from the resin).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.