Abstract

This work demonstrates a quantitative interpretation of ion desorption in matrix-assisted laser desorption/ionization (MALDI). The theoretical modeling incorporates transition state theory for the desorption of surface ions, assuming chemical and thermal equilibrium in the solid state prior to desorption. It is distinct from conventional models that assume chemical equilibrium in the gas phase. This solid-state thermodynamic interpretation was used to examine the desorption of pure 2,4,6-trihydroxyacetophenone (THAP) and of angiotensin I mixed with THAP. It successfully described the changes in ion yield with the effective temperature under various laser fluence and initial temperature conditions. The analysis also revealed the key role played by ion concentration in the modeling to provide the best fit of the model to observations. On the other hand, divergence of the ion beam with laser fluence was examined using an imaging detection method, and the signal saturation normally seen at high fluence was appropriately reduced by ion focusing. Simplified but deceptive theoretical interpretations were obtained when the analysis was conducted without adequate calibration of the instrument bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.