Abstract

A solid-phase synthesis for a DNA analogue with a mixed guanidinium and urea backbone is reported. This material is nearly identical in structure to deoxynucleic guanidine (DNG) but the neutral urea internucleoside linkages can be used to attenuate the overall positive charge on the oligomer. The opposite charge attraction between urea containing DNG oligomers (DNGUs) and complimentary DNA can be controlled so that the affinity of DNG for DNA does not overwhelm the base-pairing discrimination necessary for specific binding. Octameric DNGU containing between 1 and 3 urea substitutions covered the range between very tight and very weak bonding. Each deletion of a positive charge reduced the thermal denaturation temperature (Tm) by approximately 5°C. Mismatches in the DNA oligomers reduced the Tm values by 3 to 5°C for each of the DNGU oligomers. DNGUs were found to bind in a 2:1 fashion to complimentary DNA in the same manner as DNG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.