Abstract

This paper presents a solid-phase strategy to efficiently assemble multiprotein scaffolds-known as megamolecules-without the need for protecting groups and with precisely defined nanoscale architectures. The megamolecules are assembled through sequential reactions of linkers that present irreversible inhibitors for enzymes and fusion proteins containing the enzyme domains. Here, a fusion protein containing an N-terminal cutinase and a C-terminal SnapTag domain react with an ethyl p-nitrophenyl phosphonate (pNPP) or a chloro-pyrimidine (CP) group, respectively, to give covalent products. By starting with resin beads that are functionalized with benzylguanine, a series of reactions lead to linear, branched, and dendritic structures that are released from the solid support by addition of TEV protease and that have sizes up to approximately 25 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.