Abstract

Antisense oligonucleotide (ASO)-based drug development is gaining significant momentum following the recent FDA approval of Eteplirsen (an ASO based on phosphorodiamidate morpholino) and Spinraza (2′-O-methoxyethyl-phosphorothioate) in late 2016. Their attractiveness is mainly due to the backbone modifications which have improved the in vivo characteristics of oligonucleotide drugs. Another class of ASO, based on peptide nucleic acid (PNA) chemistry, is also gaining popularity as a platform for development of gene-specific therapy for various disorders. However, the chemical synthesis of long PNAs, which are more target-specific, remains an ongoing challenge. Most of the reported methodology for the solid-phase synthesis of PNA suffer from poor coupling efficiency which limits production to short PNA sequences of less than 15 residues. Here, we have studied the effect of backbone modifications with Hmb (2-hydroxy-4-methoxybenzyl) and Dmb (2,4-dimethoxybenzyl) to ameliorate difficult couplings and reduce “on-resin” aggregation. We firstly synthesized a library of PNA dimers incorporating either Hmb or Dmb and identified that Hmb is superior to Dmb in terms of its ease of removal. Subsequently, we used Hmb backbone modification to synthesize a 22-mer purine-rich PNA, targeting dystrophin RNA splicing, which could not be synthesized by standard coupling methodology. Hmb backbone modification allowed this difficult PNA to be synthesized as well as to be continued to include a cell-penetrating peptide on the same solid support. This approach provides a novel and straightforward strategy for facile solid-phase synthesis of difficult purine-rich PNA sequences.

Highlights

  • Peptide nucleic acids (PNAs) are synthetic single-stranded analogs of DNA/RNA in which the phosphodiester backbone is replaced with a flexible and uncharged N-(2-aminoethyl) glycine unit and the nucleobases are linked via a methylene carbonyl linkage (Nielsen et al, 1991)

  • The results showed a full conversion of the monomer into its corresponding dimers that results from the complete Oto-N acyl transfer during the coupling for each of the Fmoc-PNA monomers which is often the limiting step (Lelievre et al, 2016)

  • It is important to note that the phenolic ester (S1) is not stable to the piperidine treatment prior to the final Trifluoroacetic acid (TFA) cleavage and there is no doubt about the formation of the dimers through an amide bond

Read more

Summary

Introduction

Peptide nucleic acids (PNAs) are synthetic single-stranded analogs of DNA/RNA in which the phosphodiester backbone is replaced with a flexible and uncharged N-(2-aminoethyl) glycine unit and the nucleobases are linked via a methylene carbonyl linkage (Nielsen et al, 1991). This class of synthetic molecule has unique physiochemical properties including chemical stability and high bio-stability toward nucleases and peptidases in biological fluids (Demidov et al, 1994). The PNA exerts its antisense effect through a steric blocking mechanism targeting mRNA to prevent translation or pre-mRNA to modulate the splicing to produce a therapeutically relevant mRNA transcript (Jarver et al, 2014)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call