Abstract

The synthesis of caged luminescent peptide substrates remains challenging, especially when libraries of the substrates are required. Most currently available synthetic methods rely on a solution-phase approach, which is less suited for parallel synthesis purposes. We herein present a solid-phase peptide synthesis (SPPS) method for the synthesis of caged aminoluciferin peptides via side chain anchoring of the P1 residue. After the synthesis of a preliminary test library consisting of 40 compounds, the synthetic method was validated and optimized for up to >100 g of resin. Subsequently, two separate larger peptide libraries were synthesized either having a P1 = lysine or arginine residue containing in total 719 novel peptide substrates. The use of a more stable caged nitrile precursor instead of caged aminoluciferin rendered our parallel synthetic approach completely suitable for SPPS and serine protease profiling was demonstrated using late-stage aminoluciferin generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call