Abstract
On the basis of the supported protein layers (SPLs) substrate, the study presented an ultrasensitive and highly specific platform for single-molecule fluorescence detection of antibody using quantum dots (QDs) as probes. To construct the SPLs surface platform for antibody immobilization, bovine serum albumin (BSA), anti-BSA, and protein G were firstly attached to carboxyl-terminated substrate surfaces by turns. Then nonspecific adsorption of single antibody molecules on SPLs surfaces was investigated. Through the irreversible interaction between streptavidin and biotin, streptavidin-QD conjugates were employed to conjugate with biotinylated antibody, producing QD-antibody conjugates for generating fluorescent signals in fluorescent imaging. Epi-fluorescence microscopy equipped with an electron multiplying charge-coupled device was chosen as the tool for single-molecule fluorescence detection here. The concentration of antibody is quantified based on the direct counting of individual fluorescent spots, one by one. The generated fluorescent signals increased with the increasing concentration of immobilized antibody and were found to be proportional to antibody concentrations. The better brightness and photostability of QDs, and slower increase in the number of counted molecules make a large linear dynamic range of 1.0 × 10 −14 to 3.0 × 10 −12 mol L −1 between the number of single molecules and antibody concentrations, which is comparable to the previously reported surface-based SMD analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.