Abstract

A nitrogen-doped metal organic framework (MOF) based porous carbon (C-(C3N4@MOF)) was produced by the carbonization of a graphitic carbon nitride (g-C3N4) templated MOF (NH2-MIL-125). The C-(C3N4@MOF) was then coated on a stainless steel wire by sol-gel technique to serve as a solid-phase microextraction (SPME) fiber coating. The coated fiber was studied for the extraction of fourteen organophosphorous pesticides (OPPs) from different fruit and vegetable samples followed by gas chromatography-mass spectrometer (GC–MS) detection. The C-(C3N4@MOF) coated fiber exhibited a high extraction capability for the OPPs. Both single factor optimization and response surface analysis (Box-Behnken Design) methods were implemented to optimize the experiment conditions for the extraction. The results indicated that the linear response for the fourteen OPPs was in the range from 0.69 to 3000 ng g−1 and the coefficients of determination (r2) ranged from 0.9981 to 0.9998. The limits of detection (LODs, S/N = 3) ranged from 0.23 to 7.5 ng g-1. The method recoveries (R) of the fourteen OPPs for spiked fruit and vegetable samples were between 82.6% and 118%, with the relative standard deviations (RSDs) varying from 2.8% to 11.7%. The fiber can be reused over 100 times without a significant loss of extraction efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.