Abstract

A new solid phase extractant selective for uranium(VI) based on benzoylthiourea anchored to activated carbon was developed via hydroxylation, amidation and reaction with benzoyl isothiocyanate in sequence. Fourier transform infrared spectroscopy and total element analysis proved that benzoylthiourea had been successfully grafted to the surface of the activated carbon, with a loading capacity of 1.2 mmol benzoylthiourea per gram of activated carbon. The parameters that affect the uranium(VI) sorption, such as contact time, solution pH, initial uranium(VI) concentration, adsorbent dose and temperature, have been investigated. Results have been analyzed by Langmuir and Freundlich isotherm; the former was more suitable to describe the sorption process. The maximum sorption capacity (82 mg/g) for uranium(VI) was obtained at experimental conditions. The rate constant for the uranium sorption by the as-synthesized extractant was 0.441 min −1 from the first order rate equation. Thermodynamic parameters (Δ H 0 = −46.2 kJ/mol; Δ S 0 = −98.0 J/mol K; Δ G 0 = −17.5 kJ/mol) showed the adsorption of an exothermic process and spontaneous nature, respectively. Additional studies indicated that the benzoylthiourea-anchored activated carbon (BT-AC) selectively sorbed uranyl ions in the presence of competing ions, Na +, Co 2+, Sr 2+, Cs + and La 3+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call