Abstract

A zirconium(IV)-based metal-organic framework material (MOF-808) has been synthesized in a simple way and used for the extraction of phenoxyacetic acids in complex samples. The material has good thermal and chemical stability, large specific surface area (905.36m²/g), and high pore size (22.18Å). Besides, it contains a large amount of Zr-O groups, easy-to-form Zr-O-H bond with carboxyl groups of phenoxyacetic acids, and possesses biphenyl skeleton structure, easy to interact with compounds through π-π and hydrophobic interactions. These characteristics make the material very suitable for the extraction of certain compounds with a high extraction efficiency and excellent selectivity. The extraction conditions were optimized, and then an analytical method was successfully established and applied for analysis of actual samples. The solid-phase extraction method based on prepared material had a wide linear range of 0.2-250μg/L and a low detection limit of 0.1-0.5μg/L for four phenoxyacetic acid compounds including 2,4-dichlorophenoxyacetic acid, 2-(2,4-dichlorophenoxy) propionic acid, 4-chlorophenoxyacetic acid, and dicamba. The relative standard deviations of intra- and interday precision were 1.8-3.8 and 4.3-6.9%, and the recoveries after spiking were between 77.1 and 109.3%. The results showed that the material is a desired substituent for the extraction of compounds with benzene ring structure containing carboxyl groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.