Abstract
Three anion-exchangeable, silica-confined ionic liquids were synthesized for solid phase extraction of lactic acid from fermentation broth, followed by high-performance liquid chromatography coupled to ultraviolet detection. By comparing the adsorption isotherms of lactic acid on different silica-confined ionic liquids, interactions between the lactic acid and sorbents were investigated. The adsorbed amounts were then fitted into different adsorption isotherm equations; finally, the Langmuir equation was selected. Then the imidazolium silica with the highest adsorption capacity of lactic acid was packed into a cartridge for solid phase extraction. The loading volume of the cartridge was optimized by the Langmuir equation and geometry. After washing with distilled water and eluting with 0.25 mol L −1 of an HCl solution, the lactic acid was separated from interference with a recovery yield of 91.9%. Furthermore, this kind of anion-exchangeable material exhibited potential for industrial applications and separation of other anionic bioactive compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.