Abstract
Solid-phase epitaxial regrowth (SPER) of Si amorphised by ion implantation is considered as a potential solution for the fabrication of ultra-shallow junctions for future technology nodes of Si CMOS devices. In the present work, a series of Epi-Si samples amorphised by ultra-low energy As implantation was investigated by monitoring the lattice recovery during SPER and the simultaneous evolution of implantation-induced defects using the combined capabilities of X-ray scattering methods and medium energy ion scattering. Annealing temperatures between 550 and 700 °C and times from 10 to 200 s were chosen to characterise different stages of the SPER as well as the onset of defect annealing. Small defect clusters were detected in the end-of-range damage region of the implanted samples and layer-by-layer regrowth of the amorphised region was clearly observed. The complementary nature of the information obtained by the two methods is demonstrated. This study confirms that the high dose As implant causes the slowing down of the SPER rate in Si.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.