Abstract

The laser-induced mass transfer in thin-film substrate /Cr/Cu/Ni system is studied by means of Auger Electron Spectroscopy (AES). For the laser-pulse energy values, E = 100-170mJ, the diffusion of Cu atoms into Ni layer and their accumulation within this layer are observed, whereas at E > 170mJ the same is true for Cr atoms. The observed phenomena are explained on the basis of calculated temperature distribution in the system at issue during lased action. Enhanced transfer of Cr atoms towards external surface is observed under the irradiation regimes leading to the melting of intermediate copper layer. Diffusion coefficients of copper and chromium calculated from their surface accumulation show an exponential dependence on the laser-pulse energy. Under laser heating, the diffusion processes are more manifested as compared with those under conventional thermal annealing. This is bound up with higher concentration of nonequilibrium defects generated within the irradiation zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.