Abstract

We herein describe a bioinspired solid-phase assembly of a multienzyme system scaffolded on an artificial cellulosome. An alcohol dehydrogenase and an ω-transaminase were fused to cohesin and dockerin domains to drive their sequential and ordered coimmobilization on agarose porous microbeads. The resulting immobilized scaffolded enzymatic cellulosome was characterized through quartz crystal microbalance with dissipation and confocal laser scanning microscopy to demonstrate that both enzymes interact with each other and physically colocalize within the microbeads. Finally, the assembled multifunctional heterogeneous biocatalyst was tested for the one-pot conversion of alcohols into amines. By using the physically colocalized enzymatic system confined into porous microbeads, the yield of the corresponding amine was 1.3 and 10 times higher than the spatially segregated immobilized system and the free enzymes, respectively. This work establishes the basis of a new concept to organize multienzyme systems at the nanoscale within solid and porous immobilization carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.