Abstract
Samarium-doped ceria (SDC) is considered as an alternative electrolyte material for intermediate-temperature solid oxide fuel cells (IT-SOFCs) because its conductivity is higher than that of commonly used yttria-stabilized zirconia (YSZ). The paper compares the properties of anode-supported SOFCs with magnetron sputtered single-layer SDC and multilayer SDC/YSZ/SDC thin-film electrolyte, with the YSZ blocking layer 0.5, 1, and 1.5 μm thick. The thickness of the upper and lower SDC layers of the multilayer electrolyte are constant and amount to 3 and 1 μm, respectively. The thickness of single-layer SDC electrolyte is 5.5 μm. The SOFC performance is studied by measuring current-voltage characteristics and impedance spectra in the range of 500-800 °C. X-ray diffraction and scanning electron microscopy are used to investigate the structure of the deposited electrolyte and other fuel cell layers. SOFCs with the single-layer SDC electrolyte show the best performance at 650 °C. At this temperature, open circuit voltage and maximum power density are 0.8 V and 651 mW/cm2, respectively. The formation of the SDC electrolyte with the YSZ blocking layer improves the open circuit voltage up to 1.1 V and increases the maximum power density at the temperatures over 600 °C. It is shown that the optimal thickness of the YSZ blocking layer is 1 µm. The fuel cell with the multilayer SDC/YSZ/SDC electrolyte, with the layer thicknesses of 3/1/1 µm, has the maximum power density of 2263 and 1132 mW/cm2 at 800 and 650 °C, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.