Abstract

Our contribution demonstrates the technological potential of coupling Liquid Organic Hydrogen Carrier (LOHC)-based hydrogen storage and hydrogen-based Solid Oxide Fuel Cell (SOFC) operation. As SOFC operation creates waste heat at a temperature level of more than 600 °C, clever heat transfer from the SOFC operation to the LOHC dehydrogenation process is possible and results in an overall efficiency of 45% (electric output of SOFC vs. lower heating value of LOHC-bound hydrogen). Moreover, we demonstrate that LOHC vapour does not harm the operational stability of a typical 150 W SOFC short stack. By operating the stack with LOHC-saturated hydrogen, operation times of more than 10 years have been simulated without noticeable degradation of SOFC performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call