Abstract

The aim of this study is the development and testing of a control system for solid oxide fuel cell hybrid systems through dynamic simulations. Due to the complexity of these cycles, several parameters, such as the turbine rotational speed, the temperatures within the fuel cell, the differential pressure between the anodic and the cathodic side and the Steam-To-Carbon Ratio need to be monitored and kept within safe limits. Furthermore, in stand-alone conditions the system response to load variations is required to meet the global plant power demand at any time, supporting global load variations and avoiding dangerous or unstable conditions. The plant component models and their integration were carried out in previous studies. This paper focuses on the control strategy required for managing the net electrical power from the system, avoiding malfunctions or damage. Once the control system was developed and tuned, its performance was evaluated by simulating the transient behaviour of the whole hybrid cycle: the results for several operating conditions are presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.