Abstract
Radioactive Particle Tracking (RPT) is a powerful advanced technique for studying the solid motion within industrial scale multiphase reactors. However, it is rather difficult to implement in actual industrial installations, mainly due to the required calibration stage under actual operating conditions. This work has the aim of comparing the motion of calcium alginate beads in a three-phase bubble column examined either with RPT or with an array of the same scintillation detectors used for RPT, but located vertically aligned beside the analyzed vessel. Liquid and solid used for the experiments were in batch mode and mixed by circulating air. The homogeneous and heterogeneous regimes have been explored. Results arising from both techniques, like axial tracer trajectories, axial profiles of tracer positions probabilities, solid axial mixing times and solid axial dispersion coefficients are compared, for highlighting the relevant information that can be extracted from the simplified method, validated by RPT. It is found that the simplified method fairly coincides with the classic technique for estimating several relevant parameters. Finally, the estimated flow regime transition inferred from the simplified method by symbolic analysis is compared with the one arising from chordal holdup trends determined by gamma densitometry, also with satisfactory agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.