Abstract

The ways in which the topology and geometry of a three-dimensional finite-element model may evolve as a consequence of fracture and fragmentation are enumerated, and the actions which may be taken in order to update the boundary representation of the solid so as to faithfully reflect that evolution are described. Arbitrary topological and geometrical evolution of a three-dimensional solid, not necessarily restricted to an evolution of its surface, are addressed. Solids are described by their boundary representation (BRep) and a surface and volume triangulation. Fracture processes are modeled by the introduction of cohesive elements at element interfaces. Simple rules are shown to enable the simulation of strikingly complex crack patterns. The scope and versatility of the approach is illustrated with the aid of selected examples of application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.