Abstract

Nanozymes with high catalytic stability and sustainability have emerged as powerful competitors to natural enzymes for diverse biocatalytic applications. However, constructing a nanozyme with high specificity is one of their biggest challenges. Herein, we develop a facile solid migration strategy to access a flower-like single copper site nanozyme (Cu SSN) via direct transformation of copper foam activated by 2-methylimidazole. With highly clustered CuN3 sites whose local structure is similar to that of natural polyphenol oxidase, the Cu SSN exhibits excellent activity and specificity to oxidize phenols without peroxidase-like activity. Furthermore, the Cu SSN shows high sensitivity in the colorimetric detection of epinephrine with a low detection limit of 0.10 μg mL-1, exceeding that of most previously reported enzyme-mimicking catalysts. This work not only provides a simple method for the large-scale preparation of high-performance nanozymes but also offers an inspiration for the design of highly specific nanozymes by mimicking the synergy among sites in natural enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.