Abstract
MXenes induce excellent wear resistance under solid lubrication due to their distinctive surface chemistry, easy-to-shear ability, and capability to form low-friction and wear-resistant tribofilms. However, beyond the extensively studied Ti3C2Tx, other promising members of the MXene family remain largely underexplored. Therefore, we spray-coated multi-layer vanadium carbide (V2CTx) coatings (thickness ∼10.8 μm) on steel substrates and studied their tribological performance for prolonged times (10,000 cycles) using a reciprocating ball-on-disk tribometer with acting contact pressure of 445 MPa in ambient conditions. Results show that V2CTx-coated substrates demonstrate an 8-fold reduction in friction (COF of 0.11) and a 10-fold wear rate reduction (1.405 × 10−6 mm3 N−1 m−1). High-resolution materials characterization confirmed that the remarkable tribological performance of these coatings can be traced back to the formation of protective films on the substrate (tribofilm) and counterbody (transferfilm) consisting of contact pressure and frictional heat-induced degraded, deformed, exfoliated V2CTx nanosheets, nanocrystalline oxides, and amorphous carbon debris. This work fully elucidates the tribological potential of V2CTx, which is of utmost relevance for designing high-performance lubricating materials. Our work has assessed the performance of multi-layer V2CTx (M2XTx) due to its remarkable thermal stability, low molecular weight, good mechanical properties, and high interlayer spacing, thus serving as an entry point into diverse MXene compositions, including M4X3Tx (V4C3Tx).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.