Abstract

The (solid+liquid) phase equilibrium for eight {x diphenyl ether+(1−x) biphenyl} binary mixtures, including the eutectic mixture were studied by using a differential scanning calorimetry (DSC) technique. A good agreement was found between previous literature and experimental values here presented for the melting point and enthalpy of fusion of pure compounds. The well-known equations for Wilson and the non-random two-liquid (NRTL) were used to correlate experimental solid liquid phase equilibrium data. Moreover, the predictive mixture model UNIFAC has been employed to describe the phase diagram. With the aim to check this equipment to measure heat capacities in the quasi-isothermal Temperature-Modulated Differential Scanning Calorimetry method (TMDSC), four fluids of well-known heat capacity such as toluene, n-decane, cyclohexane and water were also studied in the liquid phase at temperatures ranging from (273.15 to 373.15)K. A good agreement with literature values was found for those fluids of pure diphenyl ether and biphenyl. Additionally, the specific isobaric heat capacities of diphenyl ether and biphenyl binary mixtures in the liquid phase up to T=373.15K were measured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.