Abstract

Antibiotic resistance genes (ARGs) and nanoplastics (NPs) have been identified as emerging pollutants in water environment; the interactions between antibiotic resistance plasmids (ARPs) and NPs will influence ARG transport in sediments. Herein, the adsorption experiments of a typical ARP onto polystyrene nanoplastics (PS-NPs) in river and lake sediments were conducted to elucidate the adsorption mechanisms and the effects of environmental factors. Results indicated that the adsorption amounts of PS-NPs increased with the dosages while decreased with the particle size of sediments. Multi-layer adsorption of PS-NPs was found to exist mainly in sand and silt sediments, whereas the filling adsorption dominated in the clay. Moreover, the adsorbed PS-NPs enhanced the physisorption of ARPs in sediments through stimulating the intraparticle diffusion of ARPs induced by electrostatic force. Besides, the adsorption amounts of ARPs onto the PS-NPs decreased with the increasing pH and dissolve organic matter due to the enhanced electrostatic repulsion and competitive adsorption. The ion strength played catalytic roles by increasing the electrostatic attraction and adsorption sites of ARPs on PS-NPs. The adsorbed ARPs in sediments were closely related with the ARGs in extra/intracellular DNA of biofilms, influencing the distribution and proliferation of ARGs largely. The findings indicate that ARG-associated pollution might be enhanced by the solid-liquid interface adsorption induced by NPs, which was controlled by pH, ion strength and dissolve organic matter. This study provides supplementary insights into the roles of NPs as carriers of ARP in sediments, and advances our understanding on the risks of NP-ARG co-occurring contamination in aquatic ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call