Abstract

Solid-liquid equilibria (SLE) data for two binary organic mixtures of N-(2-methoxyethyl)-p-nitroaniline + N-ethyl-4-nitroaniline (S1) and N-(2-ethanol)-p-nitroaniline + N-ethyl-4-nitroaniline (S2) have been measured using differential scanning calorimeter to build the corresponding solid-liquid phase diagrams. The quality of the SLE data has been checked by consistency tests, presenting good quality factors for both systems. Simple eutectic behavior has been observed for these systems with the presence of a solid-solid transition for S2. The SLE data have been correlated by means of Wilson, NRTL, and UNIQUAC equations. The used models calculate the equilibrium temperatures very satisfactorily. The best modeling results were obtained using the Wilson equation with a root mean square deviation between experimental and calculated values for S1 and S2 of 1.15 and 1.99, respectively. The Wilson, NRTL, and UNIQUAC equations have also been used to compute excess thermodynamic functions viz. excess Gibbs energy, enthalpy, and entropy. The obtained results demonstrated a moderate positive deviation to ideality for S1, and a strong positive deviation for S2, unveiling the nature of the interactions between the compounds forming each mixture. In addition, microstructural studies have been carried out by FTIR, XRD and optical microscopy. Weak molecular interactions have been shown for the eutectic compositions. Jackson’s roughness parameter was calculated and found to be greater than 2, suggesting the faceted morphology with irregular structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call