Abstract

Background: Solid lipid nanoparticles (SLN) have drawn increasing interest in recent years. These nanoparticles are formed from stable or solid lipid mixtures and then stabilized by emulsifiers. As nanoparticles, colloidal particles running in size somewhere in the 10 to 1000 nm range are known. SLN provides fascinating properties, such as minimal scale, massive surface area, high medication piling, correspondence of stages at the interface, and is interested in their ability to enhance drug execution. Main text: This paper provides a description of the choice of ingredients, the effect of lipids and their structure on the formulation, and the various methods of processing SLN. We explain the characteristics of SLN stability and the possibilities of SLN stabilization by lyophilization in this article. The relation between drug absorption and the complexity of SLN dispersions, which involves the existence of other colloidal structures and the physical state of the lipid, is uncommonly considered. We define the possible problems of SLN preparation and performance on the basis of characterization. First, the nasal route was known to accomplish the avoidance of first-pass hepatic metabolism in order to maximize absolute bioavailability, and secondly, the immediate nose-to-brain pathway to enhance the delivery of brain medicines. SLNs have been designated to increase drug permeability through the blood-brain barrier as a drug delivery device (BBB). Conclusion: To sum up, this article gives insight SLNs a colloidal drug carrier places together the compensations of polymeric nanoparticles, SLNs have numerous benefits such as easy incorporation of lipid and lipophilic as well as hydrophilic drugs, suitable physical stability, and available at low cost and easy to manufacture. The nasal route was accepted to exploit first its prevention of the hepatic first-pass metabolism to increase the absolute bioavailability, and second, the direct nose-to-brain pathway to enhance the brain drug delivery. SLNs were chosen as a drug delivery system to improve drug permeability across the blood-brain barrier (BBB) and consequently its brain delivery.

Highlights

  • The prefix "nano" comes from the Greek word "Nanos," meaning to predominate

  • Main text: This paper provides a description of the choice of ingredients, the effect of lipids and their structure on the formulation, and the various methods of processing Solid lipid nanoparticles (SLN)

  • SLNs were chosen as a drug delivery system to improve drug permeability across the blood-brain barrier (BBB) and its brain delivery

Read more

Summary

Main text

This paper provides a description of the choice of ingredients, the effect of lipids and their structure on the formulation, and the various methods of processing SLN. We explain the characteristics of SLN stability and the possibilities of SLN stabilization by lyophilization in this article. The relation between drug absorption and the complexity of SLN dispersions, which involves the existence of other colloidal structures and the physical state of the lipid, is uncommonly considered. We define the possible problems of SLN preparation and performance on the basis of characterization. The nasal route was known to accomplish the avoidance of first-pass hepatic metabolism in order to maximize absolute bioavailability, and secondly, the immediate nose-to-brain pathway to enhance the delivery of brain medicines. SLNs have been designated to increase drug permeability through the blood-brain barrier as a drug delivery device (BBB)

Conclusion
Introduction
Emulsifiers and co- emulsifiers
Hot homogenization technique
Possible problems in SLN preparation and SLN performance
High pressure-induced drug degradation
Lipid crystallization and drug incorporation
Supercooled melts
Lipid modifications
Particle shape
Gelation phenomena
In vitro method for the study of Drug release from Solid Lipid Nanoparticles
Findings
10. Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call