Abstract

Safflower (Carthamus tinctorius L.) has been explored as a source of natural antioxidant. However, quercetin 7-O-beta-D-glucopyranoside and luteolin 7-O-beta-D-glucopyranoside, as its bioactive compounds, possessed poor aqueous solubility, limiting its efficacy. Here, we developed solid lipid nanoparticles (SLNs) decorated with hydroxypropyl beta-cyclodextrin (HPβCD) incorporated into dry floating gel in situ systems to control the release of both compounds. Using Geleol® as a lipid matrix, SLNs were <200 nm in size with >80 % of encapsulation efficiency. Importantly, following the decoration using HPβCD, the stability of SLNs in gastric environment was significantly improved. Furthermore, the solubility of both compounds was also enhanced. The incorporation of SLNs into gellan gum-based floating gel in situ provided desired flow and floating properties, with <30 s gelation time. The floating gel in situ system could control the release of bioactive compounds in FaSSGF (Fasted-State Simulated Gastric Fluid). Furthermore, to assess the effect of food intake on release behavior, we found that the formulation could show a sustained release pattern in FeSSGF (Fed-State Simulated Gastric Fluid) for 24 h after being released in FaSGGF for 2 h. This indicated that this combination approach could be a promising oral delivery for bioactive compounds in safflower.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call