Abstract

Recent advancements in drug delivery technologies paved a way for improving cancer therapeutics. Nanotechnology emerged as a potential tool in the field of drug delivery, overcoming the challenges of conventional drug delivery systems. In the field of nanotechnology, solid lipid nanoparticles (SLNs) play a vital role with a wide range of diverse applications, namely drug delivery, clinical medicine, and cancer therapeutics. SLNs establish a significant role owing to their ability to encapsulate hydrophilic and hydrophobic compounds, biocompatibility, ease of surface modification, scale-up feasibility, and possibilities of both active and passive targeting to various organs. In cancer therapy, SLNs have emerged as imminent nanocarriers for overcoming physiological barriers and multidrug resistance pathways. However, there is a need for special attention to be paid to further improving the conceptual understanding of the biological responses of SLNs in cancer therapeutics. Hence, further research exploration needs to be focused on the determination of the structure and strength of SLNs at the cellular level, both in vitro and in vivo, to develop potential therapeutics with reduced side effects. The present review addresses the various modalities of SLN development, SLN mechanisms in cancer therapeutics, and the scale-up potential and regulatory considerations of SLN technology. The review extensively focuses on the applications of SLNs in cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.