Abstract
The instantaneous fuel regression rate within a solid-fuel ramjet combustor was characterized using X-ray radiography and ultrasonic transducer measurements. Experiments were performed with cylindrical center-perforated hydroxyl-terminated polybutadiene fuel grains at three mass fluxes () with consistent inlet total temperatures and chamber pressures. Ultrasonic transducer measurements demonstrated changes of web thickness ranging from 7.50 to 9.85 mm and regression rate measurements ranging from 1.35 to . The local maxima of change in the web thickness due to flow reattachment and erosive burning were consistently measured with the ultrasonic transducers. Changes in the port radius on the order of 8–9 mm and regression rates of approximately were deduced from the X-ray radiography images. The structure of the flow reattachment region was evident in measurements from the X-ray radiography images captured near the combustor entrance, whereas images captured at the midlength of the combustor exhibited more uniform fuel regression profiles. Ultrasonic measurements of change in the web thickness were consistently greater in magnitude relative to X-ray radiography measurements. X-ray radiography imaging allowed for the more accurate measurement of fuel regression with the greatest axial spatial resolution, whereas ultrasonic transducer measurements yielded the greatest radial spatial resolution. The change in web thickness calculated with weight-based techniques yielded smaller-magnitude measurements of change in the web thickness relative to X-ray radiography. The regression rate was largely invariant with the mass flux within the investigated operating regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.