Abstract

Solid freeform fabrication (SFF) enables the fabrication of anatomically shaped porous components required for formation of tissue engineered implants. This article reports on the characterization of a three-dimensional-printing method, as a powder-based SFF technique, to create reproducible porous structures composed of calcium polyphosphate (CPP). CPP powder of 75-150 microm was mixed with 10 wt % polyvinyl alcohol (PVA) polymeric binder, and used in the SFF machine with appropriate settings for powder mesh size. The PVA binder was eliminated during the annealing procedure used to sinter the CPP particles. The porous SFF fabricated components were characterized using scanning electron microscopy, micro-CT scanning, X-ray diffraction, and mercury intrusion porosimetry. In addition, mechanical testing was conducted to determine the compressive strength of the CPP cylinders. The 35 vol % porous structures displayed compressive strength on average of 33.86 MPa, a value 57% higher than CPP of equivalent volume percent porosity made through conventional gravity sintering. Dimensional deviation and shrinkage analysis was conducted to identify anisotropic factors required for dimensional compensation during SFF sample formation and subsequent sintering. Cell culture studies showed that the substrate supported cartilage formation in vitro, which was integrated with the top surface of the porous CPP similar to that observed when chondrocytes were grown on CPP formed by conventional gravity sintering methods as determined histologically and biochemically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.