Abstract
Halide perovskites are promising photoelectrocatalytic materials. Their further development requires understanding of surface processes during electrochemistry. Thin films of tellurium-based vacancy-ordered perovskites with formula A2TeI6, A = Cs, methylammonium (MA), were deposited onto transparent conducting substrates using aerosol-assisted chemical vapor deposition. Thin film stability as electrodes and photoelectrodes was tested in dichloromethane containing tetrabutylammonium PF6 (TBAPF6). Using photoemission spectroscopy, we show that the formation of a solid electrolyte interphase on the surface of the Cs2TeI6, consisting of CsPF6, enhances the stability of the electrode and allows extended chopped-light chronoamperometry measurements at up to 1.1 V with a photocurrent density of 16 μA/cm2. In contrast, (CH3NH3)2TeI6 does not form a passivating layer and rapidly degrades upon identical electrochemical treatment. This demonstrates the importance of surface chemistry in halide perovskite electrochemistry and photoelectrocatalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.