Abstract

AbstractAqueous zinc metal batteries (AZMBs) are deemed a promising technology for electrochemical energy storage due to their high safety, low cost, and high energy density. However, AZMBs still suffer from severe side reactions, including Zn dendrite formation and intrinsic hydrogen evolution reaction. In contrast to the solid‐electrolyte interphase (SEI) layer that stabilizes Li/Na/K metal anodes in organic electrolytes, it is difficult to form an SEI layer on the Zn surface because of the difficulty in decomposing the salt anions within the narrow electrochemical potential window of water. A team from the University of Adelaide reports a novel pure or hybrid electrolyte with H2O by using dimethyl methylphosphonate (DMMP) as solvent or co‐solvent to construct a uniform and stable phosphate‐based SEI layer (ZnP2O6 and Zn3(PO4)2). As a result, high Coulombic efficiencies and improved capacity retentions are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.