Abstract

The method of thin-wall tube torsion to characterize metal’s shear response is well-known. Unfortunately, the thin wall tube specimen tends to buckle before reaching large shear deformation and failure. An alternative technique, which has rarely been considered, is Nadai’s surface stress method (Nadai, Theory of Flow and Fracture of Solids. McGraw-Hill, New York, 1950). It derives shear stress-strain curve from the torque-twist relationship of a solid bar. Although the analysis is more complex due to nonlinear shear stress distribution along the radius, the deformation is stable through large shear deformation to failure.Solid bar torsion experiments were conducted to study large shear deformation of Al6061-T6. Two experiments were described in this study. Since few tests were available in the literature, these experiments were to explore the large deformation behaviors of an engineering alloy and the application of modern measurement techniques, such as 3D DIC method, under torsion. Results show during twisting, the surface shear strain distribution was uniform initially and then localized on a narrow band; eventually, the specimen was cracked and failed within the band. Depending on the specimen size, the twist could be greater than 360°. Details are discussed.KeywordsDuctile failureLarge deformationDigital image correlationShear stress-strain curveTorsion

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call