Abstract
Copper retention by ferrihydrite, leaf compost, and montmorillonite was studied over 8 months in systems that emulate a natural soil where different solid phases compete for Cu through a common solution in a compartmentalized batch reactor. Copper speciation in solution (total dissolved, DPASV-labile, and free) and exchangeable and total Cu in individual solid phases were determined. Organic carbon in solution (DOC) and that retained by the mineral phases were also determined. Cu sorption reached steady-state after 4 months and accounted for 80% of the Cu initially added to the system (0.15 mg L(-1)). The remaining 20% stayed in solution as nonlabile (82.8%), labile (17%), and free (0.2%) Cu species. Copper sorption followed the order organic matter > silicate clays > iron oxides. Within each solid phase, exchangeable Cu was < or = 10% of the total Cu sorbed. DOC reached steady state (22 mg L(-1)) after 4 months and seemed to control Cu solubility and sorption behavior by the formation of soluble Cu-DOC complexes and by sorbing onto the mineral phases. DOC sorption onto ferrihydrite prevented Cu retention by this solid phase. Using a multicomponent system and 8 months equilibrations, we were able to capture some of the more important aspects of the complexity of soil environments bytaking into account diffusion processes and competition among solid- and solution-phase soil constituents in the retention of a metal cation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.