Abstract

LiMn2O4 and LiCuxCryMn2-x-yO4 (x = 0.50; y = 0.05 - 0.50) powders have been synthesized via sol-gel method for the first time using Myristic acid as chelating agent. The synthesized samples have been taken to physical and electrochemical characterization such as thermo gravimetric analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and electrochemical characterization viz., electrochemical galvanostatic cycling studies, electrochemical impedance spectroscopy (EIS) and differential capacity curves (dQ/dE). XRD patterns of LiMn2O4 and LiCuxCryMn2-x-yO4 confirm high degree of crystallinity with good phase purity. FESEM image of undoped pristine spinel lucidly depicts cauliflower morphology with good agglomerated particle size of 50 nm while 0.5-Cu doped samples depict the pebbles morphology. TEM images of the spinel LiMn2O4 and LiCu0.5Cr0.05Mn1.45O4 authenticate that all the synthesized particles via sol-gel method are nano-sized (100 nm) with spherical surface and cloudy particles morphology. The LiMn2O4 samples calcined at 850℃ deliver the high discharge capacity of 130 mA·h/g with cathodic efficiency of 88% corresponds to 94% columbic efficiency in the first cycle. Among all four compositions studied, LiCu0.5Cr0.05Mn1.45O4 delivers 124 mA·h/g during the first cycle and shows stable performance with a low capacity fade of 1.1 mA·h/g cycle over the investigated 10 cycles.

Highlights

  • Spinel LiMn2O4 has been zeroed in attractive and promising cathode materials for lithium-ion batteries owing to its high voltages, proper Mn3+/Mn4+ redox potential, high energy densities and high power densities

  • Spinel LiMn2O4 and Zn, Co, Ni and substituted LiMn2O4 synthesized via facile sol-gel method to improve the electrochemical and structural properties of LiMn2O4 spinel based on electrode materials for Li-ion batteries [17]

  • Another two regions are observed between 100 V and 350 ̊C extending with maximum weight loss of 45% may be assigned to the decomposition of chelating agent (Myristic acid) and acetate precursors

Read more

Summary

Introduction

Spinel LiMn2O4 has been zeroed in attractive and promising cathode materials for lithium-ion batteries owing to its high voltages, proper Mn3+/Mn4+ redox potential, high energy densities and high power densities. In order to overcome the problem of Jahn-Teller distortion for obtaining the high capacity retention, several researchers have investigated earlier lithium rich spinels with various divalent, trivalent and tetravalent-doped ions such as Cr, Fe, Zn, Cu, Ga, Co, Al, Ni and Ti [10]. Low temperature synthesis methods viz., sol-gel [13] [14], chemical precipitation [15], hydrothermal and pechini process [16] have been used to obtain cathode materials with expected physical and electrochemical properties to use in lithium-ion batteries.

Experimental
Results and Discussion
FTIR Spectroscopy
FESEM Analysis
TEM Analysis
Electrochemical Impedance Spectroscopy
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call