Abstract
We have developed a method of independently tailoring the macro- and mesoporous structures in titania (TiO 2) monoliths in order to achieve liquid chromatographic separations of phosphorous-containing compounds. Anatase TiO 2 monolithic gels with well-defined bicontinuous macropores and microstructured skeletons are obtained via the sol–gel process in strongly acidic conditions using poly(ethylene oxide) as a phase separator and N-methylformamide as a proton scavenger. Aging treatment of the wet gels in the mother liquor at temperatures of 100–200 °C and subsequent heat treatment at 400 °C allow the formation and control of mesoporous structures with uniform pore size distributions in the gel skeletons, without disturbing the preformed macroporous morphology. The monolithic TiO 2 rod columns with bimodal macro–mesoporous structures possess the phospho-sensitivity and exhibit excellent chromatographic separations of phosphorus-containing compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.