Abstract

Iron titanate mixed metal oxides were synthesized by the sol–gel method through four different routes. The effect of (i) the solvent of iron precursor, (ii) the addition of the chelating agent to the titanium or iron solution and (iii) the molar ratio between the chelating agent and the titanium or iron precursor over the overall percentage of obtained iron titanates was evaluated. Fourier-transform infrared spectroscopy (FTIR) and UV–Vis spectroscopy (UV–Vis) performed on the reaction medium evidenced the formation of acetate complexes of titanium (IV) or iron (III) during the different routes. X-ray diffraction (XRD) patterns of the obtained materials showed the formation of ilmenite (FeTiO3), pseudorutile (Fe2Ti3O9) and pseudobrookite (Fe2TiO5) in different proportions, as well as hematite (Fe2O3), rutile [TiO2 (R)] and anatase [TiO2 (A)]. The materials with the highest content of iron titanates obtained in each route were characterized and evaluated in the photocatalytic degradation of cyanide using visible light irradiation. UV–Vis Diffuse Reflectance Spectroscopy (UV–Vis DRS) showed that the samples exhibited energy bandgap values between 2.31 and 2.90 eV, which agrees with the values reported for iron titanates and evidence the possible activation of the materials under visible light. Scanning electron microscopy (SEM) and nitrogen physisorption results showed that the synthesized materials exhibited nanometric particle size and lower surface area (36.7 ± 4.8 m2·g-1) than TiO2 Degussa P-25 (72–155 m2·g-1). The photocatalytic performance of the synthesized materials toward oxidation of CN− exceeded by 56% the activity of pure TiO2. The content of iron titanates in the synthesized materials was found to be the variable with the greatest influence on the photodegradation of cyanide. In addition, an inversely proportional relationship between the pseudorutile content of the materials and their photocatalytic activity was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.