Abstract

Sol–gel techniques have been used to produce various high temperature ceramic matrix composites including Ni/ α-Al 2O 3, Fe/ α-Al 2O 3, Ni/ZrO 2, SiC(whisker)/ α-Al 2O 3, and SiC(platelet)/ α-Al 2O 3, as well as chemically modified versions of some of these systems. In all cases, the composites have displayed uniform microstructures with a high degree of dispersion between the matrix and reinforcement phases, a goal often not achieved when utilizing conventional powder mixing and processing techniques. The metal–ceramic composites investigated exhibit enhanced toughness and machinability as well as the potential for catalytic applications due to their novel fine-scale microstructure. Likewise, the SiC-reinforced alumina materials have been shown to be lighter, stiffer and tougher than pure alumina, without the use of the extreme hot-pressing temperatures and pressures needed by conventional powder processing approaches to produce the same results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.