Abstract

A new class of composite electrodes made of sol–gel derived ceramic-multiwalled carbon nanotubes is used for the growth of a nanometer thin film adopting “surface grafting-from approach”. For this the multiwalled carbon nanotubes-ceramic electrode surface is first modified with an iniferter (benzyl N,N-diethyldithiocarbamate) and then dopamine imprinted polymer, under UV irradiation, for differential pulse anodic stripping voltammetric sensing of dopamine in aqueous, blood serum, cerebrospinal fluid, and pharmaceutical samples (detection limit 0.143–0.154 ng mL −1, 3 σ), without any cross reactivity, interferences and false-positive contributions. Such composite electrodes offer higher stability, electron kinetics, and renewable porous surface of larger electroactive area (with insignificant capacitance) than carbon ceramic electrodes. Additional cyclic voltammetry (stripping mode) and chronocoulometry experiments were performed to explore electrodics and kinetics of electro-oxidation of dopamine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call