Abstract

To improve the performance of automatic optical inspection (AOI), a neural network combined with genetic algorithm for the diagnosis of solder joint defects on printed circuit boards (PCBs) assembled in surface mounting technology (SMT) is presented. Six types of solder joint have been classified in respect to the reality in the manufacture. The images of solder joint under test are acquired and 14 features are extracted as input features for the classification. The neural network is easily become over-fitting because these input features are not independent of each other, so the genetic algorithm is introduced to select and remove redundant input features. The experimental results have proved that the neural network combined with genetic algorithm reduced the number of input feature and had a satisfying recognition rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.